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The paper contains the formulation and the solution of the problem on non- 

steady flow of a visco-plastic medium, surrounding a cylinder which 
rotates with a variable angular velocity. A method is developed to solve 

plane, axially symmetric “problems with a sought boundary” for parabolic 

equations. An equation is found for the determination of the radius of 

propagation of visco-plastic flow. 

1. Formulation of the problem. Let a rigid cylinder of radius R 

be placed into a visco-plastic medinm, occupying all space, and let it 

rotate in this medium with an angular velocity o= w(t). We shall study 

the motion of the medinm adjoining the cylinder. l3y contrast to a viscous 

fluid, the flow will extend only a finite distance from the rotating 

cylinder while the remaining part of the medium will.be at rest. The 

radius of the zone of the visco-plastic flow depends on the properties of 

the medium and the angular velocity of rotation of the cylinder,and is a 

function of time, a priori unknown. 

Due to symmetry the flow is described by a single equation 

for t > 0, R < F < r,(t), where v is the tangential component of the velo- 
city, p is the density, ,u is the coefficient of viscosity, r o is the 

limiting shear stress. The boundary and initial conditions are 

u (r, 0) = F(r) for R < r < r0 (0) 

?I (R, t) = Ro (t) (1.3) 

2, b-0 (t), t) = 0, vr(rO (t), 9 = 0 (1.4) 
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for t > 0. lhe conditions (1.4) express the vanishing of the velocities 

of rotation and slip on the boundary of the visco-plastic flow, whose 

radius is designated by r,(t) and is to be determined. Such general form- 

ulation of the problem may be found in [ 1 I. 

Let o0 be a characteristic angular velocity and v the coefficient of 

kinematic viscosity. 

Let us introduce a dimensionless radius, a time and an angular velo- 

city by the formulas 

x=+ Y=& w(y)=+ 

and let us reduce the equation of motion and the boundary conditions to 

the dimensionless form 

(1.5) 

Here u(x, y) is the dimensionless velocity, 6(y) is the dimensionless 

radius of the zone of visco-plastic flow, ‘3 is the Saint-Venant parameter: 

2.4 (x, y) = v* ) 6 (y) = 2!g_ , s=* (1.6) 

‘Ihe boundary conditions (in the following they will be understood as 

the limiting ones) take on the form: 

limu(x, y) = ‘* = O(x) for y -+ +O, (1 <Z < F,), [ij0 = 9) (1.7) 

lim u (2, y) = w(y) for x -++o, y>o (‘1.8) 

lim u (x, y) = 0 for x -+ 8 (y) - 0. y > 0 (I.3 

lim au (x, Y) 
-z 

i?X 

0 
for x - F (y) - 0, y > 0 (1 .lO). 

Here 8, is the initial radius of the zone of visco-plastic flow. ‘The 

formulated boundary value problem is a typical “problem with sought bound- 

ary” for an equation of the parabolic type. Gne of the most effective 

methods of solution of such problems is the method of Kolodner [ 2 1 , 
suggested by him for linear problems on phase changes. Ihis method permits 

to find the unknown boundary of the region without constructing a solution 
within the region itself. An analogous method for plane axially-symmetric 
problems is developed in the present paper. 
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2. construction of solution. We shall seek the solution of 
equation (1.5) in the form 

As is easily verified, the second term satisfies for all n and y > 0 

the equation 

a 32 1 a ______ - 
ay 8x2 x x+-f=0 

Let us show that 

Noting that for large arguments 

and introducing a new variable of integration a = (4 
tain D 

(1 < x < &I! 

(2.2) 

x)/2dy, we ob- 

~1=(6,-x)/2Jy, ;c%-(l-r)/21/; (1 <J: < &I) 

The passage to the limit under the integral sign is permitted, since 

the function Q(x) is assumed to be continuous. At the end of the interval 

the limit depends on the path of approach to the points M,(l, 0) and 

M,(6,, 0). If the approach is along the straight lines x = 1 and x = a,, 

this limit equals l/2 O(1) = 1/2@(iS0) = 0. 

For the function h(n, y) we will have the following boundary value 

problem 

a,. c32h 1 ah 1, 
_=_ ---- 
8Y 3x2 f 2 ax xz (Y > 0, 1 < y. < a (y)) (2.3) 

limh(x, y) = 0 for 2/->+o;l<s<6, (2.4) 
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(for z+&(y)-Oand y>O) (2.6) 

('for 2 - S(y)-0 and y>O) (2.7) 

Let us delimit 

the solution will 

8(y)LLetD+Vk 

Lt_. Let us extend 
. 

the region of variation of y; then the region in which 

be sought will be the region I>_! 0< y ss y,,, 1 < x < 

YC Yo, S(Y) < x < -1 be the supplementary region of 

the determination of the solution into the region D+, 

assuming that A z 0 for Qe D,, then the boundary conditions for h remain 

the same. Let us denote by b t&e closure of D_ and D+ in the set 

El 0 < y < yo, l< x < m, 1 x - SOl+jyj > 01, and by D the interior of D. 

Obviously, neither D, nor D depend on 6(y). 'Ihe quantities A-(x, y) and 

X+(X, y) will be determined as X+(M) = limb(Q) for Q+ M(r, y), where 

QeD,- 

Let US seek the solution of the equation (2.3) in the region D, satis- 

fying the conditions (2.4) and (2.5) and two jump conditions on an arbi- 

trary curve x = 6(y): 

lim h(2, y)- lim X_*B(V)_-o)~ (2, Y) I= -CPM (2.8) 
=+%+!-0 

EJJ. (2, Y) 
lim ~- 

=mhl-0 ax 

lirn ah (2, y.) I____ _= _. y(y) (2.3 
x4(%+-0 3X 

Furthermore, we require that the conditions would satisfy 

q%y)=O (2.10) 

and that the constructed solution be bounded together with its derivative 

in the region D. It will be shown below that this problem has a solution 

and that it is unique. 

'Ihe solution will be obtained in the form of a sum of a regular 
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solution 0 ( n, y) and a non-regular one N(n, y). We shall require that 
the function 0 ( x, y) satisfy the zero initial condition and the condi- 

tions 

lim8(5,y)=f(y)--N(l,y) for x-1+o,E+(oo, y)-0 (2.11) 

and the function N(n, y) in additon to conditions (2.41, (2.8), (2.9) and 
(2. IO), also satisfy the condition N(0, y) = 0; then the sum of the 

solutions will satisfy all the conditions of the formulated problem. 

‘Ihe regular solution O( x, y) may be understood as the distribution 

of velocities in the viscous fluid for a rotating cylinder with an angular 

velocity a(y) = f(y) - N( 1, y). ‘Ihis solution may be represented in the 

form[31 

M JI (~4 NI (P) - JI (P) ~VI (~4 e@,zJ)=* $- -g&(O) \ 
Jl” (P) + N12 (P) 

$!_ ,+ + 

0 

+ _2_ O" Jl(PX) AVl (p) - Jl (p)S, (px) 

s 

e--r;zv 1! 

x JIZ (P) -I- N12 (P) P I 
cc' (7) e+@‘ndTdp (2.12), 

I-J il 

where J, (p ) and N1 (p ) are Bessel and Neumann functions of the first order. 

The non-regular solution will be sought in the form of a sum of integrals 

of the type of potentials of simple and double layers of heat sources, 

uniformly distributed on the circle of radius n = 6(y). The strengths of 

the sources are selected such that conditions (2.8) and (2.9) be satisfied. 

Let us show that the unique solution will be 

X(x. y) = - +($dq + ,[H(vj,dq+ (2.13) 
0 0 

Here 
(2.14) 

It is easily verified that (2.13) for x 
(2.3), the initial condition (2.4) and the 

Let us prove that the conditions (2.8) and 

us designate the first two terms by K, and 

investigate their properties. 

f 6(y) satisfies equation 
conditions for x = 0 and x = m . 

(2.9) are also satisfied. Let 

the third by K2, and let us 
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(a) Properties ofKl(x, y). We split the interval of integration into 

two: one from 0 to y - c and the other from y - c to y. 'Iken K, can be 

represented as a sum of integrals,and having selected E > 0 sufficiently 

small and employed asymptotic expansion or a Bessel function of a large 

argument, we obtain 

'Ihe first two terms have no singularities and are continuous diffe- 

rentiable functions. 'Ihe third term represents a combination of linear 

thermal potentials of simple and double layers. In paper [ 4 I it was 

shown that such a combination has a discontinuity on the curve x = 6(y), 

and the jump equals 4(y). It is assumed thereby that the function 6(y) is 

continuously differentiable, is never-vanishing, and that 6'(y) < C/dy. 

The function a(x) is assumed to be continuously differentiable and its 

derivative satisfying the Lipshitz condition in the interval (1 < x < a,,). 

Calculating the derivative J Kl/Jn, we find that it has a jump on the 

curve x = 6(y), which equals +(y)/26 (y). 

(b) Properties ofK,(x, y). The function K is represented as an inte- 

gral of the type of a potential of a simple heat layer and is therefore 

continuous. Its derivative, within a factor, is expressed by a linear 

thermal potential of a double layer, which has a discontinuity on the curve 

x = 6(y). Carrying out calculations we find that the jump is 

[%]=-(w+@)) 
From the properties of K, and K2 it follows that their sum satisfies 

the conditions (2.8) and (2.9). 'lh e proof of uniqueness of the obtained 

equation is the same as in paper [4 1. 

If we require that 

(2.16) 

limh(2, y)= 0 for Z+ 6 (y) + 0, limah (xl Y) ___ 
ax 

=0 for r+E(y)+O 

then conditions (2.6) and (2.7) will be satisfied. This concludes the 

proof thath(x, y) = 13(x, y) + N(x, y) is the unique solution of the 

boundary value problem (2.3) to (2.7). But the constructed solution con- 

tains the so far arbitrary function 6(y). For its determination we have 

two equations (2.16). It may be shown that an arbitrary solution of the 

first equation (2.16) also satisfies the second equation of (2.16) and 
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vice versa (for proofs the reader is referred to the papers [ 2 I or [4 1). 

Thus, if at least one of the equations (2.16) has the unique solution 

for 6(O) = a,, then it is this solution which yields the sought radius of 

the extent of visco-plastic flow, while (2.1) gives the distribution of 

velocities of this flow. We note that the question of uniqueness of the 

solutions of equations (2.16) h as not as yet been resolved in a general 

form. For a series of concrete problems such proof may be found in the 

literature. An estimate of the constructed solution "in the large", that 

is for 0 < y < oo,may be given, but to this end supplementary investiga- 

tions are required, which we have not presented here. 

(c) The case of a bounded medium. In the preceding section we have con- 

structed the solution for the case of an unbounded medium. If the visco- 

plastic medium has finite dimensions, the problem is somewhat more com- 

plicated. Let us consider the most simple case which will serve to clarify 

the mechanism of the flow propagation. Let the cylinder of the radius R 

be placed in the visco-plastic medium, whose boundary is of radius R,, 

and let the cylinder start to rotate from rest with constant angular velo- 

city o= const. Obviously, a non-steady flow of the material is induced, 

which asymptotically approaches to a steady state as y + m. The distribu- 

tion of velocities for steady state flow is given by 

(3.1) 

and the radius of the zone of the extent of flow p is given by the solu- 

tion of the transcendental equation 

(3.2) 

If p ( R, then the boundary of the medium cannot influence the evolu- 

tion of flow. Its influence becomes noticeable only for p > R,. Up to the 
instant for which the flow does not reach the boundary of the medium the 

distribution of velocities obeys the same law as in the case of the un- 

bounded medium, and commencing with this instant the law of flow will be 

changed. To find this law a new boundary value problem must be solved, 

omitting the condition of vanishing slip velocities at the boundary of 

the medium. Such a solution is given in [l 1. However, the author does 
not take into account either the influence of the dimensions of the medium 

or the regions of validity of the solution obtained by him. In construct- 

ing the solution the author assumes that the whole medium is brought into 

rotation instantaneously; in such an approach the fundamental problem 

regarding the evolution of the zone of flow and of the determination of 

its radius remains unclarified. 

In conclusion the author expresses his gratitude to S.V. Fal'kovich 
for advice in the preparation of this paper. 
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